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1. INTRODUCTION

The analysis of wave propagation problems in linear damped media must take
into account both propagation features and attenuation process [1}4]. To perform
accurate numerical investigations by the "nite di!erence or "nite element
method, one must consider a speci"c problem known as the numerical dispersion
of waves. Numerical dispersion may increase the numerical error during the
propagation process as the wave velocity (phase and group) depends on the
features of the numerical model [5, 6]. In this paper, the numerical modelling
of wave propagation by the "nite element method is thus analyzed and
discussed for linear constitutive laws. Numerical dispersion is analyzed
herein through 1-D computations investigating the accuracy of higher order
15-node "nite elements towards numerical dispersion. Concerning the numerical
analysis of wave attenuation, a rheological interpretation of the classical
Rayleigh assumption has for instance been previously proposed in this journal
[4].

2. WAVE PROPAGATION AND DISPERSION

2.1. NUMERICAL MODELLING OF SEISMIC WAVE PROPAGATION

Di!erent types of numerical methods are available to investigate seismic wave
propagation: "nite di!erences, "nite elements, spectral methods or boundary
elements [3, 7}9]. The main advantage of the boundary element method is to allow
an accurate modelling of wave propagation in (semi-)in"nite media. The "nite
element method is very e$cient for the response analysis of complex non-linear
media. For the analysis of seismic wave propagation, the two main drawbacks
of the "nite element method are the arti"cial re#ections on the mesh boundaries
and the numerical dispersion. This paper considers the modelling of wave
propagation problems through the second issue. Numerical dispersion is
analyzed for 1-D models and di!erent types of "nite elements (from low to higher
order).
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2.2. THEORETICAL AND PHYSICAL POINTS OF VIEW

For a viscoelastic solid, the 1-D wave equation in the frequency domain can be
written as follows:

L2u(x, u)
Lx2

#

ou2

E*(u)
u (x, u)"0, (1)

where u is the displacement, x the distance, u the circular frequency, o the density
and E*(u) the complex modulus [1, 10].

The solution can then take the following form [1, 2]:

u (x, u)"u(0, u)exp(ik*(u)x), (2)

where k*(u) is the complex wavenumber:

k* (u) "
u

c(u)
#ia(u). (3)

The "rst term is related to the phase di!erence and the wave velocity c(u) depends
on frequency. This dependence characterizes the physical dispersion. The second
term of equation (3) corresponds to damping and gives a real-valued decreasing
exponential term in the expression of solution (2). From the numerical point of
view, both properties have their counterparts generally called numerical dispersion
and numerical damping [3, 6]. Numerical dispersion makes the wave velocity
depend on the features of the numerical model (time-integration scheme, mesh size,
element type2).

3. NUMERICAL WAVE DISPERSION

The physical (and geometrical) wave dispersion makes the wave velocity depend
on frequency. Numerical dispersion makes the wave velocities change with the
features of the numerical model. Propagation phenomena could then be di$cult to
model using "nite di!erence or "nite element methods since the numerical error
may increase during propagation.

The numerical solution of equation (1) can be written under the same form as the
theoretical solution (2):

u
h
(x, u)"u(0, u) exp(ik

h
(u)x) (4)

where u
h
and k

h
are the approximated displacement and wavenumber.

Di!erent theoretical works deal with the estimation of the numerical error made
on k

h
when compared with the exact wavenumber k [5, 11, 12]. Ihlenburg and
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Babus\ ka [12] give for instance the following relation for "nite elements with linear
interpolation:

cos khh"
1!K2/3
1#K2/6

, (5)

where K is the normalized frequency, K"kh"uh/c.
Expression (5) shows that the numerical solution of equation (1) is only

a propagating wave for normalized frequencies below the cut-o! frequency K
0

[12]. For such frequencies, the numerical wave nevertheless propagates slower or
faster than the theoretical solution, depending on the characteristics of the
numerical model. One must analyze this numerical dispersion and quantify the
corresponding error.

4. EFFICIENCY OF HIGHER ORDER FINITE ELEMENTS

4.1. NUMERICAL DISPERSION FOR LOW-ORDER FINITE ELEMENTS

To analyze the numerical error for wave propagation problems, we have
previously considered a simple 1-D case involving a linear elastic medium (no
physical dispersion) and low-order "nite elements (linear polynomial interpolation)
[6]. The numerical wave dispersion is investigated considering the ratio *h/j which
is the normalized size of the elements towards the wavelength j. From these results,
it can be noted that coarse meshes lead to numerical results overestimating
velocities (phase or group). This is the practical e!ect of numerical dispersion which
can be overcome by using an element size well-adapted to the wavelength of the
problem. Classically, the element size is chosen around a 10th or a 20th of the
wavelength. However, even with these assumptions, the numerical error may be
signi"cant for large propagating distances (for instance 5j or 10j).

In two dimensions, it is necessary to take into account the wave type, the angle of
incidence, the type of element (triangular, quadrilateral2). Bamberger et al. [5, 6]
give di!erent dispersion relations for numerical waves through phase and group
velocities. From these dispersion laws, several general conclusions for meshes with
linear "nite elements can be made:

f numerical dispersion is higher for a larger element size (compared to the
wavelength);

f the error is maximum for a zero incidence and minimum for a 453 incidence angle;
f for small element size values, P-waves are much more sensitive to incidence angle

than S-waves.

For an element size to wavelength ratio of 0)5 (*h"j/2), the relative error in phase
velocity can reach 50% for a quadrilateral elements mesh and 30% for a mesh
involving triangular elements [5, 6, 12]. Whereas, for a value of 0)1 (*h"j/10), the
relative error in phase velocity is below 2%. Using elements corresponding to



Figure 1. Di!erent types of "nite elements considered in the analysis with the same number of
nodes in the direction of propagation and corresponding degrees of polynomial interpolation p.
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a 10th or a 20th of the wavelength leads to results of good precision. These are the
usual values taken for pratical computations.

4.2. COMPARISON OF DIFFERENT FINITE ELEMENT TYPES

The great interest in higher order "nite elements has already been demonstrated
for stress analysis involving elasto-plastic materials [13, 14]. In this section, we
analyze the e$ciency of di!erent element types in numerical wave dispersion.
Di!erent types of "nite elements are depicted in Figure 1 for linear (3-node),
quadratic (6-node) and higher order 15-node elements [3]. To make valuable
comparisons, we study the one-dimensional wave propagation problem considering
the same number of nodes in the direction of propagation for each type of element.
A Newmark time-integration algorithm (unconditionnally stable) is considered
within the "nite element code CESAR-LCPC [15].

Three di!erent cases are studied ranging from rather "ne to very coarse meshes.
The total number of points in the direction of propagation is chosen constant from
one element type to another (Figure, Table 1). The number of elements is then two
times smaller for 6-node elements than for 3-node and four times smaller for
15-node elements. As the interpolation degrees for each element type are, respec-
tively, 1, 2 and 4, the number of elements in each case is inversely proportional to
the order of the polynomial approximation. The e$ciency of these "nite elements in
numerical wave dispersion is thus analyzed in terms of the ratio *h/oj where o is
the degree of their polynomial interpolation.
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4.3. EFFICIENCY IN NUMERICAL DISPERSION

Figures 2}4 give the numerical results for a second order Ricker pulse
propagating in a linear elastic medium (no physical dispersion). These "gures
Figure 2. Numerical dispersion (case 1) considering di!erent types of "nite elements: snapshots at
di!erent times and theoretical delays (computed with CESAR-LCPC).

TABLE 1

Comparisons for di+erent ,nite element orders and various numbers of elements

Element type 3-node 6-node 15-node

Case 1 200 100 50
Case 2 120 60 30
Case 3 80 40 20



Figure 3. Numerical dispersion (case 2) considering di!erent types of "nite elements: snapshots at
di!erent times and theoretical delays (computed with CESAR-LCPC).
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respectively correspond to cases 1}3 of Table 1 (from moderate to strong numerical
dispersion). For linear elements (3-node), the numerical dispersion is already
signi"cant in case 1, is rather strong in case 2 and is very strong in case 3. For
quadratic 6-node elements, there is no dispersion in case 1 and they appear more
e$cient than 3-node elements. In cases 2 and 3, 6-node elements nevertheless lead
to signi"cant and rather strong (resp.) numerical wave dispersion. In both "rst cases
(1 and 2), the e$ciency of higher order 15-node elements is very good since there is
no numerical dispersion. For Figure 4, numerical dispersion is very strong for



Figure 4. Numerical dispersion (case 3) considering di!erent types of "nite elements: snapshots at
di!erent times and theoretical delays (computed with CESAR-LCPC).
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linear elements, signi"cant for quadratic elements and rather small for higher order
elements. For case 3, some spurious oscillations nevertheless appear showing
that the corresponding meshes are not "ne enough (towards the shortest
wavelengths involved).

Considering the same number of degrees of freedom in the direction of propaga-
tion, the accuracy and e$ciency of higher order "nite elements appear much better
than linear 3-node and even quadratic 6-node elements. Ihlenburg and Babus\ ka
[12] also give some analytical estimation of the numerical error on wave velocity
for di!erent types of "nite elements.
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5. CONCLUSION

For wave propagation problems, the estimation of wave velocity is a!ected by
some error called numerical dispersion and depends on many parameters such as
mesh re"nement, time integration scheme, element type2 . The classical rule is to
choose the element size between a 10th and a 20th of the wavelength. As the
numerical error increases during propagation, it can not be su$cient to analyze
far"eld wave propagation.

Higher order "nite elements are found to have a much better e$ciency towards
numerical dispersion than linear and even quadratic elements. This very good
e$ciency allows the use of much larger element sizes leading to a lower computa-
tional cost. However, it is also necessary to consider the dispersive features of the
time-integration scheme. For the analysis of seismic wave propagation, one must
also investigate damping through both numerical and physical damping [1, 2, 4, 10].
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